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Abstract. Renormalisation group techniques are developed to treat scaling behaviour and 
crossover in the configurational properties of a one-dimensional N-step interacting random 
walk (equivalent to the two-state rotational isomeric model in polymer theory). Three 
approximate methods are first given for the root-mean-square value W =J(R2) of the 
end-to-end length R of the walk, resulting in a crossover form 3 = N ’ F ( N / N , ( K ) )  in 
the scaling regime in which N and N , ( K )  are both large, where N J K )  is an effective 
value of the number of successive steps for which the walk continues in the same direction 
because of the effect of the interaction K .  Exact scaling equations are then derived for 
the distribution function P ( R )  for the end-to-end length and its scaling behaviour is 
obtained. The relationship of these results to work on block probability distributions in 
magnetic systems is discussed. 

1. Introduction 

Random and interacting walks have been of considerable interest as models of prob- 
abilistic and kinetic processes, particularly growth and generalised diffusion, and 
especially as models for polymer chains, where different segments of the chain are 
known to interact with each other. In many kinetic processes the ‘interactions’ (e.g. 
hopping) are of short range; an exception is the Levy flight process. In the polymer 
the interactions are of two sorts: those which are of short range along the chain (caused 
by chemical interactions between neighbouring monomers), and those which are of 
long range along the chain (which arise from the fact that no two polymer segments 
can occupy the same element of volume in space, the so-called ‘excluded-volume effect’ 
(Freed 1972)). While walks with long-range interactions are difficult to treat within 
the simple geometrical schemes that we present on account of their non-Markovian 
features, it is possible to treat walks with short-range interactions by our methods, and 
thus, for instance, to gain an understanding of many kinetic models and of the 
configurational properties of polymers at the Flory point (Freed 1972). 

There are several models of interacting walks that interpolate between the pure 
random walk (RW) and the self-avoiding walk (SAW) limits, which correspond respec- 
tively to zero and infinite interaction strength. Of these, our model is one which bears 
a formal analogy to the Ising model and is one which has long been in use by polymer 
theorists, the so-called ‘rotational isomeric’ model (Volkenstein 1963, Birshtein and 
Ptitsyn 1966, Flory 1969). In essence, this is a model for polymers with hindered 
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internal rotation, in which a monomer is assumed to have r distinct possibilities of 
orientation with respect to the one that immediately precedes it, where r corresponds 
to the number of minima in the potential that governs this rotation. Each orientational 
state can be occupied with a certain probability, which is related to the depth of its 
corresponding minimum in the potential function. If we write r = 2s + 1 ,  then there 
is a direct correspondence between the r-state rotational isomeric model and the 
( 2 S + 1 )  Ising model; it turns out (Birshtein and Ptitsyn 1966) that for most cases of 
practical interest, r is small, and r = 2 or 3 are the cases most commonly treated in the 
literature (Volkenstein 1963, Birshtein and Ptitsyn 1966, Flory 1969). We deal therefore 
with the case r = 2; the case r = 3 is one to which our formalism can be trivially, if 
tediously, generalised. 

In the absence of interactions, the kinetic process described by this model is simple 
diffusion, where the RMS end-to-end length 9 of the N-step walk corresponds to the 
distance diffused in time N, and these variables are related by the non-interacting 
(random walk) result 

53aN” ( 1 )  

with exponent v = i. In interacting walks the relationship of 53 to N involves non-trivial 
exponents and crossover between the behaviours they characterise. In polymers this 
crossover is between the different limiting configurational behaviours. In the kinetic 
processes the exponents are related to spectral dimensions and the crossover may be, 
for example, between diffusion and ballistic behaviour caused by interaction. 

Such crossover in interacting walk models is described by a generalisation (‘scaling 
form’) of ( l ) ,  given here. In addition to the RMS value 3 = d(R*) of the end-to-end 
length R, the full probability distribution P ( R )  for R for an N-step interacting walk 
is of fundamental importance as it gives a much fuller characterisation of the configur- 
ations of the walk and thus of the polymer it represents, or alternatively, if one considers 
a growth process to be represented by the walk, of growth profiles. Moreover its 
Fourier transform is measured in diffraction experiments and is therefore of direct 
experimental significance. As will be shown in this paper, P ( R )  and its Fourier 
transform are strongly affected by interactions, and they also show crossover between 
two limiting forms. The full crossover is obtained here in terms of two-variable scaling 
functions which completely describe the scaling regime where both the number of 
steps ( N )  and the interaction parameter ( K )  are large. In this regime, the distribution 
P (  R )  is closely related to the universal distribution describing the block coordinate 
in the equivalent Ising model. 

The methods used here to obtain these results are of the renormalisation group 
type. Some of the basic scaling and crossover behaviours can be obtained by simple 
approximate length scaling approaches. Three such schemes are developed, and 
provide generalisations of ( 1 )  to the interacting case. Next an exact transformation 
of the distribution P ( R )  is derived from which the scaling and crossover properties 
of P ( R )  and its Fourier transform are obtained. 

The plan of the rest of the paper is as follows. Section 2 defines the model we use, 
and introduces the three approximate schemes devised to treat it. In § 3 we develop 
the exact scaling of the probability distribution P (  R )  and obtain the other properties 
available from it. A discussion of our work, including its (formal) relationship to the 
de Gennes model of a polymer in a solvent (de Gennes 1979), and its contact with 
Bruce’s results on asymptotic forms for probability distributions for block coordinates 
in Ising-like systems (Bruce 1981) is given in 0 4. 
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2. The model: approximate scaling approaches 

The two-state rotational isomeric model of a polymer can (together with biased diffusion 
and related growth models) be mapped onto the following interacting walk model. 
We consider a one-dimensional N-step walk in which a particular step is labelled by 
integer i (increasing along the chain) and its direction by a,(a, = *l ,  where + and - 
correspond respectively to a right and left step) and where each step has a different 
probability according to whether it is in the same direction as or opposite to the 
immediately preceding one; the probability P ( a , )  for a step a, can be expressed in 
terms of at - ,  as 

(2) 

where K is a measure of bias in the walk or its related kinetic process, and where, in 
the polymer, K is the interaction strength divided by the thermal energy k,T. 

Our aim in this section is to determine, via scaling methods, the dependence of 
the RMS end-to-end length 3 of the interacting walk on N, the number of steps, 
obtaining in particular the exponents characterising the asymptotic behaviours (cf (1)) 
and the crossover relationship that connects them. 

We will describe here three approximate real space renormalisation group schemes 
that approach the problem from slightly different viewpoints. What unifies all of this 
is the following idea: as the quantity of interest to us is 3, we construct renormalisation 
group schemes that preserve 3 exactly (cf § 2.1), or approximately (cf §§ 2.2 and 2.3) 
on a cluster, while decimating the number of steps (cf $0 2.1 and 2.3) or the number 
of lattice sites (cf § 2.2) by a factor of two. The section concludes (0 2.4) with an exact 
discussion of the crossover based on the exact length scaling statement from 9 2.1 and 
the exact interaction scaling statement from § 2.3 (which is also obtainable from a 
magnetic analogue), a preliminary account of which has been given by Stinchcombe 
(1985). 

P ( a , )  = exp(Ka,a,-,)(exp( K )  +exp(-K))-’ 

2.1. ‘de Gennes’-type decimation 

The motivation for this scheme was found in the context of de Gennes’ methods for 
applying renormalisation group concepts to the determination of v for a polymer chain 
(de Gennes 1979). 

His ideas, which were developed in the context of field theory, involved the grouping 
of successive chain subunits into renormalised subunits, subject to the preservation of 
the end-to-end length of the chain. In this spirit, we consider an N-step walk with 
step length a, where x = e-K parametrises the interaction; we seek a renormalised a’ 
such that the walker preserves 3 by tracing out the same vectorial distance in a walk 
with half the number of steps. The resulting scaling equations are 

(3a) a’* = 2a2[1 + (1 -x2) / (  1 + X* ) ]  

The weight matching is obtained by stipulating (de Gennes 1979) that all interactions 
between two renormalised subunits must be taken into account for the determination 
of the renormalised interaction. Thus, to find the scaling of the interaction (i.e. x’ in 
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terms of x)  we use a majority rule that matches the weight of, e.g., an ‘onward’ step 
on the scaled walk to the net weight of all configurations on the original walk where 
‘onward’ steps predominate. This results in 

x’2=x4(3+x2)/(1+3x2). (4) 

This has fixed points x* = 1,  0 related respectively to the random walk (RW) and the 
self-avoiding walk (SAW) (we ignore the unphysical x* = -1 ,  as x 2 0 always). These 
two fixed points control the asymptotic scaling limits of the walk, in each of which a 
behaviour like ( 1 )  (but with different exponents v, v’) occurs. With a scaling hypothesis 
of the form (de Gennes 1979) 

R = af(  N, x)  

R = af(  N, x)  = a’f(iN, x’). 

( 5 )  

and the fact that R has been preserved under this scaling, we must have 

( 6 )  

At the fixed point x* = 1,  f( N, x) then becomes f( N, l ) a  N” where, from (3) 
and ( 6 )  

ald2a = (N/2)” /  N” ( 7 )  

from which we see that v = f, as expected in this RW limit. As pointed out by de 
Gennes (1979) the recursive nature of the scaling technique imposes a power-law 
structure on f( N, 1 )  and hence implies the existence of an exponent v. 

Similar considerations applied to the SAW fixed point x* = 0 yield f( N, 0 ) a  N‘ 
where 

a/2a = ( N / 2 )  ‘1 N’ (8) 

and hence z7 = 1 as expected. 
The crossover between these (exact) asymptotic behaviours which can be obtained 

from the scaling equations ( 3 )  and (4) is approximate because equation (4) is not 
exact. The transformation (4) of x was obtained by an approximate majority rule. It 
will be shown later that if  one uses the (exact) interaction scaling from § 2.3, (4) can 
be replaced by an exact scaling equation which, with the use of (3), yields the exact 
crossover behaviour. 

2.2. ‘Series’ method 

With this method we make a direct comparison between walks on a lattice with lattice 
spacing 1, and walks on a lattice with lattice spacing I‘ = 21, subject to the approximate 
preservation of $3. Thus, unlike § 2.1, it is not the walk which is decimated but the 
lattice on which the walk is conducted. We look at this approach in two slightly 
different ways ((i)  and (ii) below). 

(i)  A renormalised site (replacing a two-site cell of the original lattice) is said to 
be visited if an arbitrarily selected site, say the second site, in its generating cell is 
visited (cf Napiorkowski’s ‘centre rule’ (Hoye and Napiorkowski 1980)). A renor- 
malised nearest-neighbour step then corresponds to all possible walks that start on a 
selected site in one cell and terminate on the corresponding site in the neighbouring 
cell without visiting selected sites in other cells; as an approximation we consider 
walks with a maximum of four steps. The decimation can be described in terms of 
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figure 1, where + and 0 represent undecimated and decimated sites respectively. Let 
S = K / (  1 + x2), T = Kx2/ (  1 + x2) be the weights attached to direct and reversed steps 
respectively, where x = e-K and K is the fugacity attached to a step. The weight S’ of 
the direct step spanning AB on the decimated lattice is then the combined weight of 
all two- and four-step walks on the original lattice that (assuming A was approached 
from the left) start at A and end at B, but are otherwise allowed to visit 0, A, 0,, B, 
O2 in an arbitrary fashion: 

SI= S2+3T2S2+S3T ( 9 )  

T’= T S + T 2 S 2 + 2 T 3 S + S 3 T .  (10)  

K ‘ =  K ?  

Similarly, 

At the SAW fixed point x* = 0, these give 

so that the fixed point value of K is K *  = 1 and the linearised scaling equation (in terms 
Of 8K’K-KK* and SK’=K’-K*) iS 

8 K 1 1 K * 5 1  =28Kl,*,,.  (11) 

This, with the (approximate) preservation of 3, a scaling relation of the form 311- 
( 8 ~ ) ~ ”  and l ‘ =  21, implies 

so that v’= 1 ,  as expected. 

(which is the effective fugacity in this limit) satisfies 
Equations ( 9 )  and (10) also yield a RW fixed point x* = 1 at which T = S = ~ / 2  = p 

pI = p2+4p4.  (13) 

The only real fixed point of this equation is at p* = 0.5 which, with reasoning 
similar to that of ( 1 2 ) ,  gives v = 0.63 (the exact values of p* and v are both 0.5 in this 
limit). 

(ii) We now choose a smaller cluster (Family and Gould 1984) and match the 
renormalised nearest-neighbour step on the new lattice to all walks that start at A and 
end at B (see figure 2 ) ,  and are otherwise free to visit the sites A, 0,, B in an arbitrary 
fashion, provided they do not leave the chosen cluster. The notation is as in (i)  above 
and the equations for S‘ and T’ are 

S ’ =  S 2 + ( 2 S 2 T 2 ) / ( 1  - T 2 )  (14)  

T ’ =  T S + ( 2 T 3 S ) / ( l - T 2 ) .  ( 1 5 )  

0 + 0 + 0 

v. B 92 0 A 

Figure 1. Chosen cluster for 8 2.2(i). 

+ 0 f 

A 0. B 

Figure2. Chosen cluster for § 2.2(ii). 
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At the SAW fixed point x* = 0, we recover (1 l ) ,  obtaining v’ = 1, as before. At the 
RW fixed point x* = 1, using T =  S =  p as before, (14) and (15) reduce to 

The only real fixed point of this equation is at p* = 0.54, which with reasoning 
along the lines of (12) gives v = 0.58. 

Thus in both (i)  and (ii)  the asymptotic behaviour is exact in the SAW limit but 
approximate in the RW limit. Extensions of the method to overcome this limitation 
(which is a prerequisite for any adequate treatment of the full crossover) are very 
cumbersome so we return hereafter to scaling methods which decimate the walk rather 
than the lattice. The methods of this section are, however, simple and useful ways of 
investigating interacting walk problems as well as, e.g., problems involving random 
walks on random lattices. 

2.3. Block distribution scaling (ternary approximation) 

As in 0 2.1, we decimate here the number of steps, but instead of considering just the 
root-mean-square value 9 of the end-to-end distance R, we now consider its probability 
distribution P (  R ) .  Since this provides a more detailed description of the configurational 
properties of the chain, its scaling properties are very important. The method of this 
subsection is based on a ‘blocking’ approximation to preserve 2 under a decimation 
procedure that involves halving the number of steps at each stage of scaling. As will 
be evident, it is a ternary version of the exact scaling to be presented in P 3, and was 
the motivation for the latter: it also provides a useful exact scaling equation for the 
interaction parameter x. The consecutive steps of the walk are ‘blocked’ here into 
groups of two at each stage of scaling with the (approximate) blocking rules given by 
the majority rule illustrated in figure 3. This procedure is then used to obtain the 
scaling of the step length a and the interaction parameter x. 

If P, , (R)  denotes the distribution for the end-to-end length R of a 2“-step walk, it 
is straightforward to show that in terms of a (the step length), the first few distributions 
are given by 

P , ( R ;  U ,  X )  = (1 + x 2 ) - ’ [ 6 ( R  - 2 ~ )  +2x26(R) + 6 ( R  + 2 a ) ]  (17) 

- - e- - 
-0 --I 

Figure 3. Schematic representation for ‘blocking’ rule in 5 2.3. 
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P2 (R;  a, x )  = ( 1  + X 2 ) - 3 { [ 6 ( R  -4a)  + ( x 2 +  x 4 ) 6 ( R  - 2 a )  + x 6 S ( R ) ]  

+ [ ( x ' +  x 4 ) 6 (  R - 2 a )  + 2 ( x 2 +  x 4 ) S ( R )  + ( x 2 +  x 4 ) S ( R  + 2 a ) ]  

+ [ 6 ( ~  + 4 a ) +  ( x Z + x 4 ) ~ ( ~ + 2 a ) + x 6 ~ ( ~ ) ] }  ( 1 8 )  

etc. (The distributions P, are normalised to 2 for convenience.) The two-step distribu- 
tion P,  has a ternary form, and the scaling procedure is to regard P2 as a renormalised 
form of P , ( R ;  a, x )  (corresponding to a doubled number of steps), i.e. similar to ( 1 7 )  
but with renormalised parameters x' ,  a ' .  Unfortunately Pz does not in general have 
the ternary form, so the matching of P2 to PI is only approximate and involves a 
grouping of the terms on the right-hand side of ( 1 8 )  according to the blocking rules. 
This grouping has already been carried out in (18). From the matching of the weight 
of a blocked configuration to the combined weight of its component configurations 
we then have 

X I 2  2 x 2  
( 1  + x'2) - ( 1  + x2)2' 

As will be discussed later, this equation is exact. From matching the contributions of 
a blocked configuration and its component configurations to the ( 2 m  + 1)th moments 
SR2'"+'P(R) dR of R we obtain 

22m+l X 2  -- (a')2"+' - ++-) 
1 + x f 2  ( l + x  ) ( 1 + x 2 ) 2  

which will be seen to be independent of m (and exact) only at the SAW limit. ( 1 9 )  has 
fixed points at x* = 1 , 0 ,  corresponding respectively to the RW and SAW limits. Inserting 
x* = 0 in ( 2 0 ) ,  one obtains for the SAW limit 

a' = 2a. ( 2 1 )  

Using the scaling hypothesis ( 5 )  and the fact that we preserve 3 (approximately) 
under this scaling, we obtain 

which, together with ( 2 1 ) ,  implies f ( N ,  0 ) a  N' with the exact value C = 1, as expected. 
At the RW fixed point x* = 1, ( 2 0 )  gives ar2"+' = &22m+1(22m + 1 )  and the m depen- 

dence reflects the fact that the real distribution P2 is not ternary. The approximate 
nature of the RW treatment reflects the approximate matching of non-ternary distribu- 
tions to ternary form. This does not affect the description of the SAW end because 
when there are no reversals the form of the distribution does not change under scaling 
(it is always binary). The evolution of the form of the distribution function in the 
general case strongly suggests the need to set up an exact scaling for the probability 
distributions P (  R ) .  This is done in § 3, and not only leads to the exact scaling properties 
of 3 but, which is more important, of the whole distribution. 

2.4. Exact crossover and scaling forms 

In this subsection we use results already derived to obtain the exact crossover and 
scaling behaviour of the RMS end-to-end distance 5%. The approaches of §§ 2.1 and 
2.3 both decimate the number of steps. While the scaling equations ( 3 a ) - ( 3 c )  for a, 
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N and 9 are exact in § 2.1, equation (4) for the scaling of the interaction parameter 
x is approximate. On the other hand the approach in § 2.3 provides the exact interaction 
scaling equation (19). This statement can be verified by comparison with the exact 
treatment given in 0 3. Another way of seeing that (19) is exact is by using the 
relationship of the walk to an equivalent Ising problem in which, by the usual 
decimation by dilatation factor b = 2 preserving the correlation length, one has the 
exact scaling relation for the interaction 

t ’ =  t* 

with t = tanh K where K is the interaction parameter. This equation, which is also 
one of the results of § 3, is equivalent to (19). The exact scaling equations (3a)-(3c), 
and (19) written in terms of the variable t rather than x, can be used to show that each 
of the three quantities, 3, N In I /  t and Na are invariant under scaling (in the scaling 
region t + l ) ,  and hence, using the fact that 9 is proportional to a, 

9’ = N’u’F( N In t - ’ ) .  (23) 

This is an exact scaling form for the RMS end-to-end length of the N-step interacting 
walk. N, (K)  = l / ln  t - ’  can be interpreted as the average number of steps between 
reversals in the walk, which gives an understanding of the crossover variable 
N / N c ( K )  = N In t - ’  in (23). By considering the scaling equations at the fixed points 
of (19) one recovers the results v = i, v’ = 1 or (equivalently) the following statements 
concerning the asymptotic forms of the scaling function F in (23): 

F (  X )  - A x<< 1 

- BX-’ x >> 1 

where A, B are constants. (23) describes the exact crossover between the random walk 
( v  = i, N >> Nc( K ) )  and self-avoiding walk behaviour ( i r  = 1, N << Nc( K ) ) .  

3. Exact scaling of block probability distributions 

In this section we use methods first developed in connection with the conductivity of 
percolation clusters (Stinchcombe and Watson 1976) to investigate the exact scaling 
of the distribution P ( R )  governing the end-to-end length R of our walk. The approach 
involves an exact generalisation of the viewpoint employed in 0 2.3. The full distribution 
P,,(R) for the 2“-step walk is given by 

Pn(R)=t[(l+t)Pn,(R)+(1-t)Pn,(R)+(1+t)Pn,(-R)+(1-t)Pnr(-R)I (25) 

where the P,,,(*R) and P,,(*R) represent the ‘onwards’ and ‘reversed’ parts of the 
total distribution P,,(R); for example P,,(+R) labels all walks which were entered 
from the left and go out to the right and P, , , ( -R)  labels all walks which were entered 
from the right and go out to the right. The normalisation conditions are 

+m +W I-, (26a 1 

P,,(*R) dR = 2. W b )  
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The distribution P,,,,(R) can be generated by combining two walks of half the number 
of steps (each described by P,,(R)) and continuing recursively. This process was 
already considered in the approximation of 0 2.3, and is sufficient to give the full 
solution for the distribution and its scaling properties. The way in which this is done 
is by combining the constituent distributions P,,,(*R) and P,,,(*R) subject to the 
requirement that a walk going out to the right (left) can only combine serially with 
one coming in from the left (right). Furthermore, the resultant end-to-end length R’ 
appearing in Pn+,( R‘) is given by the sum of the end-to-end lengths R, and R, appearing 
in the original distributions P,,(R,) and P,,(R2). It follows that the scaling of P,, to 
Pn+l (or in more usual notation, of P to P ‘ )  is described by integral equations of the 
following form: 

x i (1-  t2)11Ps(R,)Pr(R2) + pr(R1)Ps(--RdI (28) 

and likewise for R + - R. The t + t’ recursion relation is obtained as usual (Stinchcombe 
and Watson 1976) by integrating (27) or (28) with respect to R’, and is easily seen to 
be 

t ’ =  t 2 .  (29) 

Equations (27), (28) and (29) are the basic scaling relations governing the exact 
evolution of P ( R )  in our model. 

The scaling equations can be used to obtain the scaling properties of the RMS value 
$24 of the end-to-end length or of its full and constituent distributions. Because of their 
convolution form, Fourier transformation reduces the scaling equations to the following 
algebraic equations: 

$(I + t ’ )F : (*k )  =[;(I + t ) ] ’ JGFf (*k)+JG[ ; ( l  - t ) l 2 F , ( + k ) F , ( ~ k )  
(30) 

(31) $( 1 - t ‘ ) F : (  * k )  = ai( 1 - t ’ ) [  F,(*k)F,(* k )  + Fr( * k ) F s ( +  k)]. 

Here Fs(*k) ,  F , (*k)  are the Fourier transforms of P,(*R) and P,(+R) respectively 
and the f i  appear as a consequence of our choice of symmetric normalisation in 
the Fourier transform integral (see the appendix) and its inverse. If we now define 
G( k )  as the Fourier transform of P (  R ) ,  then we have for the nth stage of iteration 

G, , (k)=$( l+  t)[Fn,(k)+Fn,(-k)l+f(l  - t)[Fn,(k)+Fn,(-k)l .  (32) 

Also, the mean square end-to-end length 2’ is given by 

$24’ = -&CG(d2/dk2)G( k ) l k = o .  (33) 

After some algebra (see the appendix) it may be shown that, if we write N = 2”, the 
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mean square end-to-end length appropriate to the nth stage of iteration is given by 

in agreement with the result of Stanley (1971) derived from a different viewpoint. 
In the scaling region (N  large and t close to l) ,  we can write this as 

where X = N In t-’ ( - 2 N  e-2K for K >> 1 )  is our crossover variable. If we make the 
equivalence 

we have a result consistent with (23), with the explicit form of our crossover function 
given by (35). The asymptotic forms of (35) are 

F(X)-1 x<< 1 

- 2 / x  x >> 1 

consistent with (24). 
We now consider the asymptotic behaviours of (30) and (31 )  and associated 

‘invariant’ distributions. If the interaction K is small, the walk is always of RW type, 
while if K is large, the walk has a SAW nature until N becomes so large that crossover 
to RW behaviour occurs. The asymptotic dependences are governed by the fixed points 
t *  = 0, 1 of (29). At t* = 1 (SAW limit) only P, (*R)  contribute to P ( R )  and the scaling 
of the related Fourier transforms are, from (30), 

F : ( * k )  =v‘%FS(*k). (37) 

It follows that P , ( * R )  retain their initial single delta function form (cf the appendix, 
equations (A16) and (A17)) under scaling with an effective step length that scales at 
each stage as 

a’ = 2a (38) 

and that the invariant distribution P*(R)  remains of binary form under repeated 
iterations in this limit. Thus with the usual scaling arguments, we recover fi = 1 .  The 
binary distribution just arrived at is one of the two ‘invariant’ distributions whose 
shape is unchanged on scaling, and only its scale ( a  in this case) changes. 

By considering the other fixed point t* = 0 (RW limit), we similarly find the other 
invariant distribution. In this case the symmetry of the zeroth-order distributions with 
respect to ‘direct’ and ‘reversed’ steps (cf equations (A16) and (A17) in the appendix) 
is maintained, and P, (*R)  and P, (*R)  contribute equally to P ( R ) ,  at all stages of 
scaling. The Fourier transform G ( k )  then scales like 

(39) 

from an initial form ( 2 1 6 )  cos ka. It will be seen that after n iterations, the form 
of G,(k )  is approximately Gaussian in the small k regime corresponding to our scaling 

G’( k )  = &‘%G2( k )  
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region: i.e. with N=2'  

G,,(k) = ( 2 / 6 )  cosNka 

- ( 2 / 6 )  exp[ N ln(1- k 2 a 2 / 2 + .  . .)] 
- ( 2 / 6 )  exp(-k22i/2) 

with 8, = d N a  = J2"a. 

approximation in the scaling region, with an effective step length C which scales as 
Thus the invariant form of P ( R )  describing the RW limit is also Gaussian to this 

C' = d2C (41 1 
so that Y = 1, again using the usual scaling arguments. 

The crossover from SAW to RW behaviour in the scaling regime N and K both 
large can be discussed by considering the neighbourhood of the fixed point t* = 1. 
Accordingly, the scaling equations (30) and (31) were iterated numerically for t = 0.99, 
and the distributions P ( R )  and G ( k )  determined at various stages of iteration. The 
scale of the R (or k )  dependence of these distributions is set by % , , / N 2 ,  while the 
dependence on N and K involves the crossover variable N In t - I .  Hence P ( R )  and 
G( k )  have two-variable scaling forms 

P ( R ;  N, K )  = P ( R ( % , , / N 2 ) ,  N In t - I )  

G( k ;  N ,  K )  = %( k(  N 2 / % , , ) ,  N In t - I )  

(42) 

(43) 

respectively, with given by (34).  
Results of numerical iteration of the scaling equations are consistent with (42) and 

(43). Figures 4 and 5 show plots of P( R(%,,/ N') ,  N In t - I )  against R(%,,/ N 2 )  for 
various values of the crossover variable N In t - I .  It can be seen that the dependence 
of the three variables R, N and K is properly represented by the two-variable scaling 

- 2  0 -1 0 0 1 0  2 c  

Figure4. Plots of 9 ( R ( B e , / N 2 ) ,  X) against R ( B e , / N 2 )  for values of X = 2" In r-'=O.O4 
(---), 10.29 (-) and 41.17 (. . .)  . Note the narrowing towards the origin of the distribu- 
tions for increasing values of the crossover variable X. 
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Figure 5. Plots of S ( R ( 9 ? ! p , / N 2 ) ,  X )  against R(9?! , /N2)  for values of X = 2" In t-' = 82.33 
(---), 164.66 (-) and 329.33 (...), showing the evolution towards a single-peaked 
distribution for increasing values of the crossover variable X. 

form, and that the distribution crosses over from a binary to a 'Gaussian' form (i.e. 
from the SAW invariant distribution to the RW one) as the crossover variable varies 
from small to large values. The intermediate cases are of special interest. 

Results are also displayed, in figures 6 and 7, for G(k;  N, K)-this quantity is of 
importance for scattering analyses. The plots are of 9 ( k ( N Z / % , , ) ,  N In t - ' )  against 
k ( N 2 / % , , )  for various values of N In t - ' .  Once again, crossover is seen to occur 
between the oscillatory form of the invariant distribution corresponding to the SAW 

Figure 6. Plots of %(k(N2/LRe,) ,  X )  against k (  N 2 / W , )  for values of X = 2" In t - '  = 0.04 
(...), 10.29 (---) and 41.17 (-). Note the broadening of the distributions for increasing 
values of the crossover variable X. 
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0.8 

I -0.8 

Figure 7. Plots of %( k (  N2/R,), X )  against k(  N2/R,)  for values of X = 2” In I-’ = 82.33 
(...), 164.66 (-) and 329.33 (---I .  The distribution evolves towards a ‘Gaussian-like’ 
form for increasing values of the crossover variable X. 

limit (small N In t - ’ )  and the ‘Gaussian’ form corresponding to the RW limit (large 
N In t - I ) .  Again the intermediate cases are of particular importance for comparison 
with real systems, as well as for the use of the scaling interpretation and the two-variable 
‘universal plots’. 

4. Discussion 

The main body of this paper has been concerned with applying real space renormalisa- 
tion group techniques and associated scaling ideas to a specific interacting walk model. 
In 5 2 we introduced three approximate decimation schemes to treat it, which are of 
considerable generality and can be used to look at different classes of problems, e.g. 
those involving random walks on random clusters, which are in turn related to problems 
of diffusion and aggregation. In 0 3, we give for the first time the application of 
probability distribution scaling methods to an interacting walk model; in particular 
this enables us to get a direct grasp on configurational properties of polymers that can 
be represented by this two-state rotational isomeric model. The quantity G( k) which 
we calculate is related to measurable neutron scattering cross sections and the system 
of equations (29)-(32) enables us in principle to look at chains of arbitrary length N. 

The possible extensions of this work fall therefore into two main categories: 
modifications of the methods of 09 2.1-2.3 and 3 should allow us to investigate related 
problems in kinetics, as well as walks with other types of short-range interactions, 
which could be based on different polymer models from the one we have chosen. 
Some of these extensions, including an interacting walk/polymer with a continuously 
variable bond angle (Mehta and Stinchcombe 1986), are currently being treated. 

We now comment on the connection of our work to other work in this field. The 
crossover behaviour of our model bears a strong formal resemblance to that arising 
in the de Gennes model of a polymer in a good solvent (de Gennes 1979) though the 
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basic systems are quite different. The dilute limit of that model (density p + O )  
corresponds to the polymer showing strongly self-avoiding behaviour (cf our limit 
x + 0). In the concentrated solution limit, interactions between different polymer chains 
cancel to give effectively non-interacting units (de Gennes 1979), so that the polymer 
chain can be satisfactorily modelled by a RW in this limit (cf our x + 1 ) .  In the semidilute 
regime there is a crossover controlled by a characteristic length 6 (the ‘blob’ size) 
which is such that for all length scales r < 6, the polymer shows self-avoiding behaviour, 
whereas for all r > 6, it shows random-walk-type behaviour; this is exactly equivalent 
to the behaviour of our walk model for 0 S x S 1, for N < N, and N > N, respectively, 
with N,, the characteristic length given by eZK. 

Finally we discuss the relationship of our results to those of Bruce (1981) in his 
analysis, using transfer matrix methods, of universal block probability distributions 
for large one-dimensional Ising-like systems. The recursive scaling technique used by 
us is a much more direct way of approaching the scaling behaviour than transfer matrix 
approaches. Moreover this technique addresses (via (29)-( 32)) chains of arbitrary 
length N and arbitrary characteristic length N,. However, in the scaling regime of 
large N and N, (equations (34)ff), the invariant forms we obtain for P ( R )  are in 
agreement with those obtained by Bruce, and we display explicitly the crossover 
(dependent on the ratio N/ N,) that connects them. 

Appendix. Derivation of W’, 

If we define 

a , ( k ) = & ~ ( l + t ) F , , ( k )  

Pn( k) = eik”&$( 1 - t)F,,( k )  

y,(k) = &$( 1 + r)FnS( - k )  

the system of equations (30) and (31) take the form 

a n + l =  a’n+~’n 

? , + I =  r’n + P’n 

P,+l = P n ( %  + m) 
where the arguments of the functions a, p, y are taken to be understood above, and 
hereafter. With U,, U, defined by 

U, = a,  - yn 

U, = a, + yn 
equations (A4)-(A6) take the form 

U n t l  = UnV, 

untl = ~ [ u i ( l + A ) + u ~ ]  

where A is a constant under scaling which can be evaluated from initial conditions. 
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Finally, if we define 

I ,  =+[U, + U,( 1 + A)”’] 

m, = &[U” - u,( l+  A)”’] 

equations (A9) and (A10) take the form 

l n + l =  1: 

m,,, = mZ,. 

Using (32) and (Al)-(A14) we obtain 

G,( k )  = - 1 [ ( / i n  + m i n )  + cos ka (1:A)”’ - (1;” -mi”) ] .  
4% 

If we now realise that our initial conditions for the zeroth-order distribution are 

P o , ( R ) =  P , , ( - R ) = S ( R - a )  (A161 

Po,( R )  = Pas( - R )  = S (  R + a )  (A171 

we can use the above to evaluate Fo,(*k)  and For(*k) ,  where, for instance, 

F o , ( k ) = z l  1 eikR d R P o , ( R ) .  

Using all the above equations, we can find l o (k ) ,  mo(k )  and A, and insert in (A15) to 
give us G , ( k ) .  We evaluate G , ( k )  in this manner to order ( k 2 ) ,  which is sufficient to 
give us 3: from equation (33) ,  and the result is equation (34). 
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